منابع مشابه
A Variational Principle for Quasistatic Mechanics
Quasistatic mechanical systems are those in which mass or acceleration are sufficientlysmall that the inertial term mu in F = mu is negligible compared to dissipative forces. In roboticsquasistatic mechanics may be used for systems with friction when motions are sufficiently slow. Here weconsider a general quasistatic system with constraints and both dissipative and conservative for...
متن کامل$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملVariational methods in relativistic quantum mechanics
This review is devoted to the study of stationary solutions of linear and nonlinear equations from relativistic quantum mechanics, involving the Dirac operator. The solutions are found as critical points of an energy functional. Contrary to the Laplacian appearing in the equations of nonrelativistic quantum mechanics, the Dirac operator has a negative continuous spectrum which is not bounded fr...
متن کاملThe equivalence principle in classical mechanics and quantum mechanics ∗
We discuss our understanding of the equivalence principle in both classical mechanics and quantum mechanics. We show that not only does the equivalence principle hold for the trajectories of quantum particles in a background gravitational field, but also that it is only because of this that the equivalence principle is even to be expected to hold for classical particles at all. While the equiva...
متن کاملDifference Discrete Variational Principle in Discrete Mechanics and Symplectic Algorithm
We propose the difference discrete variational principle in discrete mechanics and symplectic algorithm with variable step-length of time in finite duration based upon a noncommutative differential calculus established in this paper. This approach keeps both symplicticity and energy conservation discretely. We show that there exists the discrete version of the Euler-Lagrange cohomology in these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review
سال: 1954
ISSN: 0031-899X
DOI: 10.1103/physrev.96.1158